Trị riêng,vector riêng của ma trận

I. Trị riêng, vectơ riêng:

1.1 Định nghĩa: Cho A là ma trận vuông cấp n trên trường số K (K = R; C) . Số \lambda \in K được gọi là giá trị riêng (gọi tắt là trị riêng – kí hiệu GTR) của ma trận A, nếu tồn tại một vectơ 0 \ne u \in K^n sao cho: Au = {\lambda}u

Khi đó vectơ u được gọi là vectơ riêng (VTR) của ma trận A ứng với giá trị riêng \lambda

1.2 Tính chất:

1. Giá trị riêng \lambda chính là nghiệm của phương trình $latex  det(A-{\lambda}I) = 0 (1) $ (1) được gọi là phương trình đặc trưng của ma trận A.

2. Một giá trị riêng có thể có nhiều vectơ riêng.

3. Mỗi vectơ riêng chỉ ứng với một giá trị riêng duy nhất.

4. Ma trận A là nghiệm của đa thức đặc trưng của chính nó  (trong trường hợp này đa thức đặc trưng được coi là đa thức ma trận, nghĩa là biến số của nó không phải là biến số thực mà là biến ma trận)

5. Nếu {\lambda} = 0 là giá trị riêng của ma trận A thì A không khả nghịch. Ngược lại, nếu mọi GTR của A đều khác không thì A khả nghịch.

6. Nếu {\lambda} là GTR của ma trận A thì {\lambda}^k là giá trị riêng của ma trận A^k

Chứng minh:

1. Số \lambda là trị riêng của A khi và chỉ khi Au = {\lambda}u (u \ne 0) . Suy ra: hệ phương trình  tuyến tính thuần nhất (A-{\lambda}I)u = 0 có nghiệm u{\ne}0 \Leftrightarrow det(A-{\lambda}I) = 0 .

2. Điều này là hiển nhiên vì dựa vào định nghĩa và tính chất 1 thì hệ phương trình (A-{\lambda}I)u = 0 có vô số nghiệm.

3. Giả sử vectơ riêng u_1 ứng với 2 trị riêng {\lambda}_1 ; {\lambda}_2 .

Ta cần chứng minh: {\lambda}_1 = {\lambda}_2 . Thật vậy, ta có :

Au_1 = {\lambda}_1u_1 ; Au_1 = {\lambda}_2u_1 \Rightarrow {\lambda}_1u_1 - {\lambda}_2u_1 = 0 \Rightarrow ({\lambda}_1 - {\lambda}_2)u_1 = 0

Mà: u_1 \ne 0 . Do đó: {\lambda}_1 - {\lambda}_2 = 0

4. Ta có:

P({\lambda}) = det(A -{\lambda}I) \Rightarrow P(A) = det(A - A.I) = det(A-A) = 0

5. Do {\lambda} = 0 là GTR của ma trận A. Do đó:

P(0) = det(A-0.I) = 0 \Rightarrow det(A) = 0 .

Chứng tỏ A suy biến (không khả nghịch).

6. Ta có Au = {\lambda}u . Do đó:

A^2u = (A.A).u = A.(A.u) = A.({\lambda}u) = {\lambda}.Au = {\lambda}^2u .

Từ đó, bằng cách chứng minh quy nạp, bạn sẽ có kết quả.

Nhận xét: từ kết quả trên, ta nhận thấy có 1 cách để tính nhanh |A-aI| . Đó là ta tìm đa thức đặc trưng P({\lambda}) = |A-{\lambda}I| của ma trận A. Sau đó, tính giá trị của P(a).

1.3. Phương pháp giải tìm trị riêng, vectơ riêng:

Bước 1: Giải phương trình đặc trựng det(A-{\lambda}I) = 0 (1) tìm giá trị riêng.

Bước 2: Tìm vectơ riêng ứng với giá trị riêng \lambda :

Ứng với mỗi giá trị riêng {\lambda}_i vừa tìm được, ta giải hệ phương trình tuyến tính thuần nhất (A-{\lambda}_iI)u = 0 (2)

Lưu ý: theo tính chất trên, thì hpt (2) luôn luôn có vô số nghiệm. Do đó, nếu bạn giải pt (2) mà vô nghiệm hoặc có nghiệm duy nhất thì phải kiểm tra lại.

1.4 Không gian con riêng ứng với GTR {\lambda}

Các vetơ riêng của ma trận  A ứng với giá trị riêng {\lambda}_0 cùng với vectơ 0 tạo thành 1 không gian con được gọi là không gian con riêng ứng với {\lambda}_0 .

Ký hiệu: E({\lambda}_0) = \left\{u \in K^n : Au ={\lambda}u\right\}

Nếu giá trị riêng {\lambda}_0 là nghiệm bội k thì dimE({\lambda}_0) \le k

1.5 Các ví dụ :

Ví dụ 1. Tìm GTR, VTR của ma trận A: \left[\begin{array}{rr} -1 & 3 \\ -2 & 4 \\ \end{array} \right]

Bước 1: Lập phương trình đặc trưng của ma trận A:

P({\lambda}) = det(A-{\lambda}I) = 0 \Leftrightarrow \left|\begin{array}{rr} -1-{\lambda} & 3 \\ -2 & 4-{\lambda} \\ \end{array} \right| = 0 \Leftrightarrow {\lambda}^2 - 3{\lambda} + 2 = 0

Giải phương trình đặc trưng, ta có: {\lambda}_1 = 1; {\lambda}_2 = 2

Bước 2: Tìm các VTR:

1. Ta tìm các VTR ứng với giá trị riêng {\lambda}_1 = 1

Ứng với giá trị riêng {\lambda}_1 = 1 ta có VTR u_1 = (x;y) là nghiệm của hệ phương trình:

(A-I)u_1 = 0 \Leftrightarrow \left\{\begin{array}{c} -2x+3y = 0 \\ -2x+3y = 0 \\ \end{array} \right. \Rightarrow 2x = 3y

Vậy VTR ứng với GTR {\lambda}_1 = 1 có dạng u_1 = (3a;2a) = (3;2)a ; a \ne 0

2. Ta tìm các VTR ứng với giá trị riêng {\lambda}_2 = 2

Ứng với giá trị riêng {\lambda}_2 = 2 ta có VTR u_2 = (x;y) là nghiệm của hệ phương trình:

(A-I)u_2 = 0 \Leftrightarrow \left\{\begin{array}{c} -3x+3y = 0 \\ -2x+2y = 0 \\ \end{array} \right. \Rightarrow x = y

Vậy VTR ứng với GTR {\lambda}_2 = 2 có dạng u_2 = (b;b) = (1;1)b ; b \ne 0

Ví dụ 2: Tìm GTR, VTR của ma trận A: \left[\begin{array}{rr} 1 & 2 \\ -2 & 1 \\ \end{array} \right] , xem A là ma trận phức

Bước 1: Lập phương trình đặc trưng của ma trận A:

det(A-{\lambda}I) = 0 \Leftrightarrow \left|\begin{array}{rr} 1-{\lambda} & 2 \\ 2 & 1-{\lambda} \\ \end{array} \right| = 0 \Leftrightarrow (1-{\lambda})^2 + 4 = 0 (1)

Phương trình (1) vô nghiệm thực. Tuy nhiên do A là ma trận phức nên ta tìm GTR phức của ma trận. Giải phương trình đặc trưng, ta có: {\lambda}_1 = 1+2i; {\lambda}_2 = 1-2i

Bước 2: Tìm các VTR:

1. Ta tìm các VTR ứng với giá trị riêng {\lambda}_1 = 1+2i

Ứng với giá trị riêng {\lambda}_1 = 1+2i ta có VTR u_1 = (x;y) ; x, y \in C là nghiệm của hệ phương trình:

(A-(1+2i)I)u_1 = 0 \Leftrightarrow \left\{\begin{array}{c} -2ix+2y = 0 \\ -2x-2iy = 0 \\ \end{array} \right. \Rightarrow y = ix

Vậy VTR ứng với GTR {\lambda}_1 = 1+2i có dạng u_1 = (a;ia) = (1;i)a ; a \ne 0

2. Ta tìm các VTR ứng với giá trị riêng {\lambda}_2 = 1-2i

Ứng với giá trị riêng {\lambda}_2 = 1-2i ta có VTR u_2 = (x;y) ; x, y \in C là nghiệm của hệ phương trình:

(A-(1-2i)I)u_2 = 0 \Leftrightarrow \left\{\begin{array}{c} 2ix+2y = 0 \\ -2x+2iy = 0 \\ \end{array} \right. \Rightarrow x = iy

Vậy VTR ứng với GTR {\lambda}_1 = 1-2i có dạng u_2 = (ia;a) = (i;1)a ; a \ne 0

Ví dụ 3:

a. Tìm đa thức đặc trưng của ma trận: A = \left[\begin{array}{rrr} 1 & -1 & -1 \\ 1 & 3 & 1 \\ -3 & 1 & -1 \\ \end{array} \right]

b. Dựa vào đa thức đặc trưng, chứng minh A khả nghịch và chỉ ra biểu thức xác định A^{-1}

c. Tính det(A-2008I_3)

d. Tìm GTR, VTR của A.

Giải.

a. Tương tự như các ví dụ trên, ta dễ dàng tìm được đa thức đặc trưng của ma trận A:

P({\lambda}) = {\lambda}^3 -3{\lambda}^2-4{\lambda}+12

b. Theo tính chất 4 ta có: P(A) = A^3-3A^2-4A+12I_3 = 0 . Do đó:

-A^3+3A^2+4A=12I_3 \Rightarrow A(-A^2+3A+4I_3)=(-A^2+3A+4I_3).A=12I_3

Đặt B = { \dfrac{1}{12}}(-A^2+3A+4I_3) .

Ta có: A.B = B.A = I_3 .

Do đó: A khả nghịch và A^{-1} = -A^2+3A+4I_3

c. Ta có P({\lambda}) = det(A-{\lambda}I_3) nên:

det(A-2008I_3) = P(2008) = 2006.2010.2005

d. Từ đa thức đặc trưng ta tìm được các GTR: {\lambda}_1=-2 ; {\lambda}_2=2 ; {\lambda}_3 = 3

Khi đó: VTR ứng với giá trị riêng {\lambda}_1 = -2 có dạng: u_1 = (1;-1;4)a , a \ne 0

VTR ứng với giá trị riêng {\lambda}_1 = 2 có dạng: u_2 = (-1;0;1)b , b \ne 0

VTR ứng với giá trị riêng {\lambda}_1 = 3 có dạng: u_3 = (-1;1;1)c , c \ne 0

1.6. Tính chất:

Hệ các VTR ứng với các GTR đôi một khác nhau thì độc lập tuyến tính

Chứng minh

Giả sử A có m GTR khác nhau từng đôi một là {\lambda}_1 , {\lambda}_2 , ... , {\lambda}_m . Ứng với m GTR là các VTR: U = \left\{u_1 ; u_2 ; ... ; u_m \right\} .

Giả sử số vectơ độc lập tuyến tính tối đại trong U là r. Khi đó r \le m

Ta cần chứng minh r = m.

Thật vậy, giả sử r < m . Không mất tính tổng quát, giả sử hệ độc lập tuyến tính là r vectơ đầu.

Khi đó: u_m là tổ hợp tuyến tính của hệ r vectơ trên. Hay: u_m = \sum\limits_{i=1}^r {\alpha}_iu_i

Suy ra: A.u_m = A. \left(\sum\limits_{i=1}^r{\alpha}_iu_i\right) = \sum\limits_{i=1}^r {\alpha}_i.Au_i = \sum\limits_{i=1}^r{\alpha}_i{\lambda}_iu_i (*)

Mặt khác:  Au_m = {\lambda}_mu_m={\lambda}_m{\sum\limits_{i=1}^r{\alpha}_iu_i }= {\sum\limits_{i=1}^r{\alpha}_i}{\lambda}_mu_i (**)

Lấy (*) – (**) ta có: 0 = \sum\limits_{i=1}^r{\alpha}_i.({\lambda}_m - {\lambda}_i)u_i

Do hệ \left\{u_1, u_2, ..., u_r\right\} độc lập tuyến tính nên: 0 = {\alpha}_i.({\lambda}_m-{\lambda}_i) , \forall i = \overline{1, r}

Mặt khác: các GTR khác nhau từng đôi một nên: {\lambda}_m - {\lambda}_i \ne 0

Do đó: {\alpha}_i =0 , \forall i = \overline{1,r}

Suy ra: u_m = 0 (!)

Vậy điều giả sử  sai. Hay ta có r = m

Nghĩa là hệ gồm m VTR ứng với m GTR đôi một khác nhau có số vectơ độc lập tuyến tính là m nên hệ đã cho là đltt.

Xem tiếp trang sau

5 Responses

  1. rất cảm ơn về bài viết.^^

  2. Thanks alot. Năm nhất vào là Trường cho học ngay mà chẳng hiểu để làm gì. H có nhu cầu mới đi tìm lại…

  3. cảm ơn thầy về bài viết, ngắn gọn và dễ hiểu

  4. thanks…..!!

  5. Thầy có thể giải thích thêm cho em cách làm sao để tìm ma trận P không ạ ?

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

%d bloggers like this: